Using the substitution u=cosx + 1, show that the integral of sinx e^cosx+1 is equal to e(e-1), for the values of x between x=π/2 and x=0

First we differentiate the substitution giving, du/dx=-sinx, which is rearanged to dx=du/-sinx. we can then substitute this into the integral to get sinx e^cosx+1 du/-sinx which can be simplified to -e^cosx+1 du. with this we can then use the substition to obtain -e^u du. Putting in the values of x in the substitution we get that the limits will be 1 and 2. Now when we integrate we get -(e^1 - e^2), which can be written as e^2 - e^1 or e(e-1).

KS
Answered by Kieran S. Physics tutor

11245 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A cannon ball is fired at an angle 30 degrees from horizontal from a cannon with a speed 30km/h, a) calculate how high the cannonball flies, and the horizontal distance from the cannon the cannonball reaches


If photons are little particles emitted by atoms, where were they before they got emitted?


There is a point between the Moon and the Earth where the gravitational attractions are equal and opposite. How much further is this point from the Earth than the Moon


find and symplify the following. Integrate ( 2x^5 - 1/(4x^3)- 5 )dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning