Using the substitution u=cosx + 1, show that the integral of sinx e^cosx+1 is equal to e(e-1), for the values of x between x=π/2 and x=0

First we differentiate the substitution giving, du/dx=-sinx, which is rearanged to dx=du/-sinx. we can then substitute this into the integral to get sinx e^cosx+1 du/-sinx which can be simplified to -e^cosx+1 du. with this we can then use the substition to obtain -e^u du. Putting in the values of x in the substitution we get that the limits will be 1 and 2. Now when we integrate we get -(e^1 - e^2), which can be written as e^2 - e^1 or e(e-1).

KS
Answered by Kieran S. Physics tutor

11074 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Whats the effective resistance in a parallel and series circuit with a cell and two 12 ohms resistors ?


Explain quantitatively how an object can follow circular motion whilst on a ramp with no friction in the radial direction.


A spacecraft called Deep Space 1, mass 486 kg, uses an “ion-drive” engine which expels 0.13 kg of xenon propellant each day at 30kms^-1. What is the initial increase in speed of the spacecraft


How many fission event occur per second if a Uranium 235 Nuclear Reactor outputs 210MW of energy? Average Binding Energy per Nucleon of Uranium 235- 7.6 MeV Average Binding Energy per Nucleon of Products-8.5 MeV


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning