Using the substitution u=cosx + 1, show that the integral of sinx e^cosx+1 is equal to e(e-1), for the values of x between x=π/2 and x=0

First we differentiate the substitution giving, du/dx=-sinx, which is rearanged to dx=du/-sinx. we can then substitute this into the integral to get sinx e^cosx+1 du/-sinx which can be simplified to -e^cosx+1 du. with this we can then use the substition to obtain -e^u du. Putting in the values of x in the substitution we get that the limits will be 1 and 2. Now when we integrate we get -(e^1 - e^2), which can be written as e^2 - e^1 or e(e-1).

KS
Answered by Kieran S. Physics tutor

10376 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A water jet starts at a point X and reaches its maximum height at a point Y. Air resistance has a negligible effect on the motion of the water jet. (i) State the direction of the force acting on the jet at Y. (1 mark)


What is the general equation for the alpha-decay of a nucleus X, with nucleon number A and proton number Z, into nucleon Y??


Define a geostationary orbit


How can we explain the standing waves on a string?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences