Using the substitution u=cosx + 1, show that the integral of sinx e^cosx+1 is equal to e(e-1), for the values of x between x=π/2 and x=0

First we differentiate the substitution giving, du/dx=-sinx, which is rearanged to dx=du/-sinx. we can then substitute this into the integral to get sinx e^cosx+1 du/-sinx which can be simplified to -e^cosx+1 du. with this we can then use the substition to obtain -e^u du. Putting in the values of x in the substitution we get that the limits will be 1 and 2. Now when we integrate we get -(e^1 - e^2), which can be written as e^2 - e^1 or e(e-1).

KS
Answered by Kieran S. Physics tutor

10599 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A trolley of mass 0.75kg is running along a frictionless track at a constant speed of 0.7ms-1, as the trolley passes below a mass of 0.5kg the mass drops a short vertical distance onto the trolley. Calculate the new velocity of the trolley and mass.


A ball with radius 10cm is filled with an ideal gas at pressure 2*(10)^5Pa and temperature 300K. The volume of the gas is changed at constant pressure so that the radius of the ball is reduced with 1cm. Find the amount of gas and the new temperature


Imagine a ball rolls off a set of stairs with horizontal velocity, u; the stairs have a height, h and length of l. Find a formula for which step the ball will hit, n.


Determine a vector expression for the position of a particle whose velocity is (3t^2 - 8)i + 5j m/s.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences