Using the substitution u=cosx + 1, show that the integral of sinx e^cosx+1 is equal to e(e-1), for the values of x between x=π/2 and x=0

First we differentiate the substitution giving, du/dx=-sinx, which is rearanged to dx=du/-sinx. we can then substitute this into the integral to get sinx e^cosx+1 du/-sinx which can be simplified to -e^cosx+1 du. with this we can then use the substition to obtain -e^u du. Putting in the values of x in the substitution we get that the limits will be 1 and 2. Now when we integrate we get -(e^1 - e^2), which can be written as e^2 - e^1 or e(e-1).

KS
Answered by Kieran S. Physics tutor

10508 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How does a potential divider work?


Why do atoms larger than iron release energy when they undergo fission?


An ideal gas within a closed system undergoes an isothermal expansion from an initial volume of 1m^3 to 2m^3. Given that the initial pressure of the gas is 10^5 Pa, find the final pressure of the gas following the expansion.


Derive the Drift Velocity Equation


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences