Using the substitution u=cosx + 1, show that the integral of sinx e^cosx+1 is equal to e(e-1), for the values of x between x=π/2 and x=0

First we differentiate the substitution giving, du/dx=-sinx, which is rearanged to dx=du/-sinx. we can then substitute this into the integral to get sinx e^cosx+1 du/-sinx which can be simplified to -e^cosx+1 du. with this we can then use the substition to obtain -e^u du. Putting in the values of x in the substitution we get that the limits will be 1 and 2. Now when we integrate we get -(e^1 - e^2), which can be written as e^2 - e^1 or e(e-1).

KS
Answered by Kieran S. Physics tutor

10848 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A crane is attached to one end of a steel girder, and lifts that end into the air. When the cable attached to the end of the girder is at 20 degrees to the vertical, the tension is 6.5kN. Calculate the horizontal and vertical components of this force.


A rocket travels with constant velocity in a straight line in deep space. A ball is thrown from the back to the front (ie from the thrusters to the nose). Describe the path of the ball. Describe the path if the rocket were accelerating along this line.


Explain the difference between the direction of the conventional current and the direction of electron flow.


An isotope of 238,92-Uranium decays into a stable isotope of 206,82-Lead through a series of alpha and beta decays, how many of each does it go through?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning