write showing all working the following algebraic expression as a single fraction in its simplest form: 4-[(x+3)/ ((x^2 +5x +6)/(x-2))]

4-[(x+3)*((x-2)/(x^2 +5x +6))]

4-[(x+3)(x-2)/(x^2 +5x +6))]

factorise denominator 

4-[(x+3)(x-2)/(x+3)(x+2)]

cancel down (x+3)

4-[(x-2)/(x+2)]

expand 

4(x+2)/(x+2) - (x-2)/(x+2)

now share a denominator so make one fraction 

(4x+8-x+2)/(x+2)

simplify

(3x+10)/(x+2)

ST
Answered by Sarah T. Further Mathematics tutor

10833 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


Find the coordinates of any stationary points of the curve y(x)=x^3-3x^2+3x+2


Work out the equation of the tangent to the curve y=x^2+5x-8 at the point (2,6)


Find the coordinates of the stationary points on the curve y=x^5 -15x^3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences