Give the general solution to (d2y/dx2) - 2dy/dx -3y = 2sinx

Using the auxiliary equation t^2 - 2t - 3t = 0  t therefore is equal to 3 or -1. Using this value, a complementary function is derived.  Y= Ae^(3x) + Be^(-x). Finally, to fully solve, a particular integral of y = asinx + bcosx and differentiate it twice, to give equations for Dy/dx and (d2y/dx2). These can be substituted into the initial differential equations to find the values of a and b, Which are -2/5 and 1/5 respectively. The answer is then the complementary function plus the solution to the particular integral y = Ae^(3x) + Be^(-x) + (1/5)cosx - (2/5)sinx

BY
Answered by Bradley Y. Further Mathematics tutor

9728 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution of y'' - 3y' + 2y = 2e^x


Express (X²-16)/(X-1)(X+3) in partial fractions


Show, using the focus-directrix property for an ellipse, that PS +PS'=2a where P is a point on the ellipse and S and S' are the two foci.


Find the complementary function to the second order differential equation d^2y/dx^2 - 5dy/dx + 6x = x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning