A ball is thrown at speed u = 10.0 m/s at an angle of 30.0 degrees to the ground at height, s = 0. How far does the ball travel horizontally from its starting position? (Ignore air resistance and taking g = 9.81 m/s^2)

First, find the speed of the ball in the horizontal (x) and vertical (y) directions. ux = ucos(30) = 8.66m/s and uy = usin(30) = 5 m/s. Using an appropriate suvat equation find the time until the ball lands back on the ground: s = ut + 0.5at2, s = 0, u = uy, a = -9.81, t = ?. Substitute these values in and rearrange gives 0 = uyt - 0.5gt. Factorise out a t where the solution for this t would be t = 0 and so can be ignored give 0 = uy - 0.5gt. This can then be rearranged to give t = 2uy/g, with the values from the question this give a time in the air of t = 1.02s. Then substitute this value into s=uxt for the horizontal equation give s = 8.83m.

AT
Answered by Alex T. Physics tutor

2522 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A roller coaster has a loop, r = 20m, how fast should it travel so that riders don't fall out?


If the force between two point charges of charge 'Q1' and 'Q2' which are a distance 'r' apart is 'F' then what would the force be if the charge of 'Q1' is tripled and the distance between them doubled?


Why are values for gravitational potential always negative?


State what is meant by resonance and provide some examples where it is crucial.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning