How can I describe the motion of an object falling, due to gravity, through a fluid? And when does the object reach terminal velocity?

Lets consider a skydiver jumping from an airplane. Once the skydiver has let go of the plane they are pulled towards the earth due to gravity.

By Newton’s second law:

F = ma,

the sky diver begins to accelerate towards the earth at an acceleration speed dictated by their weight. The earth’s gravitational field acting on an objects mass creates an objects weight.

                                    W = mg,          g =  9.81 ms-2

However, as the skydiver accelerates towards the earth they will experience an air resistance. Air resistance is an upward force experienced by an object colliding with air molecules as it falls. The amount of upward force a skydiver experiences will vary due to the surface area of the skydiver, the speed the skydiver is falling and the density of the air itself.

As the skydiver accelerates downwards the upward force due to the air resistance will increase. Eventually the downward force due to gravity and the upward force due to air resistance will balance and the skydiver will reach terminal velocity.

                                    W = FAIR

Terminal velocity is when there are no net forces acting on an object and thus the object will move at a constant velocity.

Now consider what will happen if the skydiver opens their parachute.

AD
Answered by Ailsa D. Physics tutor

9145 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the period and frequency of a wave? - GCSE or A-Level students may ask this


What is the change in temperature of 2kg of water heated by a kettle using a voltage of 230V at 0.5A of current for 10 seconds? Assume no heat losses.


What is the root mean square voltage of an alternating current?


What is electromotive force (emf) and how can the emf of a battery be measured?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences