Let E be an ellipse with equation (x/3)^2 + (y/4)^2 = 1. Find the equation of the tangent to E at the point P where x = √3 and y > 0, in the form ax + by = c, where a, b and c are rational.

In order to find the equation of the tangent to a curve at a point (x1, y1), we use the equation y - y1 = m(x - x1), where m is the gradient of the curve at (x1, y1). We already have x1 = √3, so we now must find y1 and m.

Recall that an ellipse with equation (x/a)2 + (y/b)2 = 1 has parametric equations x = a cos(t) and y = b sin(t), so in this case, E is described by the parametric equations x = 3 cos(t) and y = 4 sin(t). Since x = √3, cos(t) = 1/√3, and hence sin(t) = √(2/3), which indicates that y1 = 4√(2/3). We then use the identity dy/dx = (dy/dt) / (dx/dt). dy/dt = 4 cos(t) and dx/dt = -3 sin(t), hence dy/dx = -4/3 cot(t). Since sin(t) = √(2/3) and cos(t) = 1/√3, cot(t) = 1/√2, hence dy/dx at this point is -(2√2)/3, so m = -(2√2)/3.

Finally, we simply sub m, x1 and y1 into our equation and rearrange. y - 4√(2/3) = -(2√2)/3 * (x - √3), implying that 3y - 4√6 = 2√6 - (2√2)x, which we can rearrange into the required form: (2√2)x + 3y = 6√6, with a = 2√2, b = 3 and c = 6√6.

BC
Answered by Benjamin C. Further Mathematics tutor

2441 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The rectangular hyperbola H has parametric equations: x = 4t, y = 4/t where t is not = 0. The points P and Q on this hyperbola have parameters t = 1/4 and t = 2 respectively. The line l passes through the origin O and is perpendicular to the line PQ.


Particles P and Q move in a plane with constant velocities. At time t = 0 the position vectors of P and Q, relative to a fixed point O in the plane, are (16i - 12j) m and -5i + 4j) m respectively. The velocity of P is (i + 2j) m/s and the velocity of Q


Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences