To differentiate a simple equation: y= 4x^3 + 7x

y = 4x^3 + 7 x

Recall: to differentiate any function of the form y = x^n

dy/dx = y' = n x^(n-1)

Hence if y = 4x^3 + 7x

dy/dx = 4 ( 3x^3 -1) + 7x^(1-1)          

= 12 x^2 + 7

YS
Answered by Yusuf S. Further Mathematics tutor

6811 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.


Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


The equation 3x^2 – 5x + 4 = 0 has roots P and Q, find a quadratic equation with the roots (P + 1/2Q) and (Q + 1/2P)


Find the stationary points of y=x^3 + 3x^2 - 9x - 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning