Uranium -238 has a half life of 4.5 billion years. How long will it take a 2g sample of U-238 to contain just 0.4g of U-238?

 

Radioactive decay is a process where the nucleus of an unstable atom, such as Uranium-238 loses energy by emitting radiation.

The half life is the average time it take for half the nuclei in a sample to undergo radioactive decay.

Given an initial sample of x with mass N(0). After a time t the mass of x left in the sample N(t) is given by:

N(t) = N(0).2-t/t1/2                (1)

Where t1/2 is the halflife. 

To answer the question we need to find t. Rearranging equation (1) we have:

- t1/2  log2[N(t)/N(0)] = t          (2)

subbing the values from the question into (2)

-4.5x10 log2 [0.4/ 2] = 10.4 billion years

 

RE
Answered by Robert E. Physics tutor

14007 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Given a projectile is launched, from rest, at an angle θ and travels at a velocity V, what is the range and path of motion of the projectile? (Ignore air resistance.)


A child is going down a snowy hill on a sledge. Draw a free-body force diagram for the child and sledge.


Two trains are heading in opposite directions on the same track. Train X has a mass of 16000kg and a speed of 2.8m/s. Train Y has a mass of 12000kg and a speed of 3.1m/s. At what speed do the joined trains move off together immediately after the collison?


How do you find the components of a vector?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning