Uranium -238 has a half life of 4.5 billion years. How long will it take a 2g sample of U-238 to contain just 0.4g of U-238?

 

Radioactive decay is a process where the nucleus of an unstable atom, such as Uranium-238 loses energy by emitting radiation.

The half life is the average time it take for half the nuclei in a sample to undergo radioactive decay.

Given an initial sample of x with mass N(0). After a time t the mass of x left in the sample N(t) is given by:

N(t) = N(0).2-t/t1/2                (1)

Where t1/2 is the halflife. 

To answer the question we need to find t. Rearranging equation (1) we have:

- t1/2  log2[N(t)/N(0)] = t          (2)

subbing the values from the question into (2)

-4.5x10 log2 [0.4/ 2] = 10.4 billion years

 

RE
Answered by Robert E. Physics tutor

12852 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe the interaction that is responsible for keeping protons and neutrons together in a stable nucleus.


What's the difference between inertial and gravitational mass?


An electron is moving with speed 2x10^5ms-1 through a magnetic field of strength 0.5T. If the electrons velocity is perpendicular to the direction of the magnetic field, what is the magnitude of the force felt by the electron?


A cup of tea contains 175 g of water at a temperature of 85.0 °C. Milk at a temperature of 4.5 °C is added to the tea and the temperature of the mixture becomes 74.0 °C. What is the internal energy lost by the water? What is the mass of the milk?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences