Uranium -238 has a half life of 4.5 billion years. How long will it take a 2g sample of U-238 to contain just 0.4g of U-238?

 

Radioactive decay is a process where the nucleus of an unstable atom, such as Uranium-238 loses energy by emitting radiation.

The half life is the average time it take for half the nuclei in a sample to undergo radioactive decay.

Given an initial sample of x with mass N(0). After a time t the mass of x left in the sample N(t) is given by:

N(t) = N(0).2-t/t1/2                (1)

Where t1/2 is the halflife. 

To answer the question we need to find t. Rearranging equation (1) we have:

- t1/2  log2[N(t)/N(0)] = t          (2)

subbing the values from the question into (2)

-4.5x10 log2 [0.4/ 2] = 10.4 billion years

 

RE
Answered by Robert E. Physics tutor

13805 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why is the refractive index of water bigger than that of air?


Imagine a ball rolls off a set of stairs with horizontal velocity, u; the stairs have a height, h and length of l. Find a formula for which step the ball will hit, n.


A ball of mass 0.7 kg strikes the wall at an angle of 90 degrees with speed 72 km/h. Consider that the bounce lasts for 0.1 s and is perfectly elastic. What is the magnitude of the average reaction force from the wall that acts on the ball?


The braking distance of a road train travelling at 15m/s is 70m. Assuming that the same braking force is applied at all speeds, show that the braking distance of a road train when travelling at 25m/s is about 190m.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning