Uranium -238 has a half life of 4.5 billion years. How long will it take a 2g sample of U-238 to contain just 0.4g of U-238?

 

Radioactive decay is a process where the nucleus of an unstable atom, such as Uranium-238 loses energy by emitting radiation.

The half life is the average time it take for half the nuclei in a sample to undergo radioactive decay.

Given an initial sample of x with mass N(0). After a time t the mass of x left in the sample N(t) is given by:

N(t) = N(0).2-t/t1/2                (1)

Where t1/2 is the halflife. 

To answer the question we need to find t. Rearranging equation (1) we have:

- t1/2  log2[N(t)/N(0)] = t          (2)

subbing the values from the question into (2)

-4.5x10 log2 [0.4/ 2] = 10.4 billion years

 

RE
Answered by Robert E. Physics tutor

12777 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Calculate the kinetic energy of a car of mass 1.0*10^3kg moving at speed of 20ms^-1.


Explain why the pressure exerted by a gas increases as they are heated at constant volume, with references to the kinetic theory of gases.


A block of ice slides down the full height from one side of a 1m high bowl and up the other side. Assuming frictionless motion and taking g as 9.81ms-2, find the speed of the block at the bottom of the bowl and the height it reaches on the the other side.


Describe, using words, an equation, *and* a graph for each, the following gas laws: (i) Boyle's Law (ii) Charles' Law (iii) The Pressure Law


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences