Uranium -238 has a half life of 4.5 billion years. How long will it take a 2g sample of U-238 to contain just 0.4g of U-238?

 

Radioactive decay is a process where the nucleus of an unstable atom, such as Uranium-238 loses energy by emitting radiation.

The half life is the average time it take for half the nuclei in a sample to undergo radioactive decay.

Given an initial sample of x with mass N(0). After a time t the mass of x left in the sample N(t) is given by:

N(t) = N(0).2-t/t1/2                (1)

Where t1/2 is the halflife. 

To answer the question we need to find t. Rearranging equation (1) we have:

- t1/2  log2[N(t)/N(0)] = t          (2)

subbing the values from the question into (2)

-4.5x10 log2 [0.4/ 2] = 10.4 billion years

 

RE
Answered by Robert E. Physics tutor

13225 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How does the photoelectric effect provide evidence for a particulate nature of electromagnetic radiation?


State Faraday's Law of electromagnetic induction, both qualitatively and quantitatively. How is Lenz's Law included in this? (4 marks)


Explain why objects in free fall drop to the ground at the same speed, regardless of their mass.


How would our Sun's luminosity change if we increased its temperature 3 times?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning