Uranium -238 has a half life of 4.5 billion years. How long will it take a 2g sample of U-238 to contain just 0.4g of U-238?

 

Radioactive decay is a process where the nucleus of an unstable atom, such as Uranium-238 loses energy by emitting radiation.

The half life is the average time it take for half the nuclei in a sample to undergo radioactive decay.

Given an initial sample of x with mass N(0). After a time t the mass of x left in the sample N(t) is given by:

N(t) = N(0).2-t/t1/2                (1)

Where t1/2 is the halflife. 

To answer the question we need to find t. Rearranging equation (1) we have:

- t1/2  log2[N(t)/N(0)] = t          (2)

subbing the values from the question into (2)

-4.5x10 log2 [0.4/ 2] = 10.4 billion years

 

RE
Answered by Robert E. Physics tutor

12927 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A 4 metre long bar rotates freely around a central pivot. 3 forces act upon it: 7N down, 2m to the left of the pivot; 8N up, 1m to the left of the pivot; 4N up, 1m to the right of the pivot. Apply one additional force to place the bar in equilibrium.


A man weighing 600N steps on a scale that contains a spring. The spring is compressed 1cm under their weight. Find the force constant of the spring and total work done on its compression.


Find the angle at which total internal refraction takes place when light is going from glass to air.


How does a cyclotron work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences