Are we able to represent linear matrix transformations with complex numbers?

Absolutely. Consider a point (a,b). This may be represented by the complex number a+bi and also by the column vector (a;b), where the semicolon means 'new line'.
To translate the point by +(c,d), in complex numbers, this is done by adding c+di to a+bi. In 2D space, this is done by adding (c;d) to (a;b).
To scale the point by a factor of r, in complex numbers, this is done by multiplying by r. In 2D space, we do the very same thing.
To rotate the point about (0,0) by angle t in the counterclockwise direction, in complex numbers, we do this by multiplying by e^it. In 2D space, we multiply on the left hand side by the matrix ((cost,-sint);(sint,cost)).
To conclude, if we were to translate a point (a,b) by +(c,d), scale it by factor r and rotate it about the origin by angle t in the counterclockwise direction, then the following are two representations of it:
(a+bi)(re^it)+(c+di)
r((cost,-sint);(sint,cost))(a;b)+(c;d)

JO
Answered by Josh O. Further Mathematics tutor

3849 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi


Given that p≥ -1 , prove by induction that, for all integers n≥1 , (1+p)^k ≥ 1+k*p.


Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning