Are we able to represent linear matrix transformations with complex numbers?

Absolutely. Consider a point (a,b). This may be represented by the complex number a+bi and also by the column vector (a;b), where the semicolon means 'new line'.
To translate the point by +(c,d), in complex numbers, this is done by adding c+di to a+bi. In 2D space, this is done by adding (c;d) to (a;b).
To scale the point by a factor of r, in complex numbers, this is done by multiplying by r. In 2D space, we do the very same thing.
To rotate the point about (0,0) by angle t in the counterclockwise direction, in complex numbers, we do this by multiplying by e^it. In 2D space, we multiply on the left hand side by the matrix ((cost,-sint);(sint,cost)).
To conclude, if we were to translate a point (a,b) by +(c,d), scale it by factor r and rotate it about the origin by angle t in the counterclockwise direction, then the following are two representations of it:
(a+bi)(re^it)+(c+di)
r((cost,-sint);(sint,cost))(a;b)+(c;d)

JO
Answered by Josh O. Further Mathematics tutor

3561 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What is the polar form of the equation: x^2+y^2 =xy+1


Find a vector that is normal to lines L1 and L2 and passes through their common point of intersection where L1 is the line r = (3,1,1) + u(1,-2,-1) and L2 is the line r = (0,-2,3) + v(-5,1,4) where u and v are scalar values.


What is De Moivre's theorem?


Find the Cartesian equation of a plane containing the points A(1, 7, -2) B(4, -3, 2) and C(7, 8, 9).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning