Find the first three non-zero terms of the Taylor series for f(x) = tan(x).

We have that the Taylor series of a function infinitely differentiable at a x = a is given by the expansion: f(x) = f(a) + f'(a)(x - a) + f''(a)(x - a)2/2! + f'''(a)(x - a)3/3! + f(4)(a)(x - a)4​​​​​​​/4! +... Thus we differentiate f(x) 5 times and evaluate at zero (as in this case a = 0) in order to obtain all our coefficients. f(x) = tan(x), f(0) = tan(0) = 0 f'(x) = sec2(x) = 1 + tan2(x) = 1 + f(x)2, thus f'(0) = 1 + f(0)2 = 1 [by writing f'(x) in terms of f(x), we can skip differentiating reciprocal trig functions and simply leave the derivates in terms of f(x) and its derivatives of lower order] f''(x) = 2f'(x)f(x), f''(0) = 0 f'''(x) = 2(f''(x)f(x) + f'(x)2), f'''(0) = 2 f(4)(x) = 2(f'''(x)f(x) + 3f''(x)f'(x)), f(4)(0) = 0 f(5)(x) = 2(f(4)(x)f(x) + 4f'''(x)f'(x) + 3f''(x)2), f(5)(0) = 16 Thus the first three non-zero terms of the Taylor series for tan(x) are: x + 2x3/3! + 16x5/5! = x + x3/3 + 2x5/15

AS
Answered by Ashwin S. Further Mathematics tutor

12358 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express f(x) = ln(x+1) as an infinite series in ascending powers of x up to the 3rd power of x


Find all the cube roots of 1


The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


What IS a Taylor Series?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning