What is the total energy of a spaceship of mass m, orbiting a planet of mass M in a circular orbit with radius r? The ship and the planet are taken to be an isolated system.

 In the non-inertial frame of reference of the spaceship, a centrifugal and a gravitational force acts on the spaceship. If its mass is m and the positive direction is radially outwards, we have:

F= -GmM/r2 -  gravitational force(G is the gravitational constant)

F= mv2/r - centrifugal force(v is the spaceship's velocity)

the spaceship's orbit is of fixed radius, so it doesn't move radially, thus there is no radial acceleration, when all forces are taken into account. From Newton's second law we have:

F+ F= ma = 0 - here a is the acceleration of the ship

=> mv2/r - GmM/r= 0

v= GM/r      (1)

The ship has kinetic and potential energies, which are given by the equations:

E= mv2/2 = GmM/2r - kinetic energy with the substitution from equation (1)

E= -GmM/r - potential energy, which is only the gravitational potential energy, since there are no other force fields

The total energy is then:

E = E+ E= GmM/2r -  GmM/r = -GmM/2r

ID
Answered by Ivan D. Physics tutor

2836 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

In a circuit with a thermistor and bulb, what happens to the brightness of the bulb as the temperature increases?


explain how a cyclotron produces a high energy electron


A projectile is launched with a speed of 10m/s at an angle 30 degrees from the positive x axis. What is the range of the projectile?


"An inclined plane at an angle of 25 degrees to the horizontal has a pulley at its top. A 30kg block on the plane is connected to a freely hanging 20kg block by means of a cord passing over the pulley. From rest how far will the 20kg block fall in 2s?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning