What happens to the pressure inside a gas-filled ball when the temperature is increased? Explain your answer, stating the assumption made.

From definition of pressure have P=F/A (in reality for a ball we are talking about infinitesimal areas, but the general definition is sufficient at this level). Assume that the area of the surface under consideration stays fixed. This is an important point about physics in general as we must be aware of what assumptions are being made and if they are appropriate. This effectively means the shape of the ball stays fixed and so we can allow proportionality between P and F. By Newton II Law we know F=dp/dt and so combining equations have P=(1/A)dp/dt. Stating conservation of momentum in a collision and the assumption of infinite wall mass, and the kinetic definition of temperature (proportional to average particle kinetic energy sufficient). Hence an increase in temperature leads to an increased rms particle velocity, leading to an increased average particle momentum. Hence the overall pressure is increased as we observe a higher collision rate and a higher change in momentum per collision. 

JH
Answered by James H. Physics tutor

2171 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A cricketer throws a ball vertically upwards so that the ball leaves his hands at a speed of 25 m/s. Calculate the maximum height reached by the ball, the time taken to reach max. height, and the speed of the ball when it is at 50% max. height.


What is the difference between internal energy, temperature, and heat?


What is Newtons third law of motion?


A pendulum of mass m is released from height h with a speed v at the bottom of its swing. a) What is the gravitational potential energy at height h and the kinetic energy at the bottom of its swing? b) Use conservation of energy to define the speed v.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning