Why is the argument of a+bi equal to arctan(b/a)?

Think about the point a+bi on the complex plane. Specifically, a is how far along the x (real) axis, and b is how far up the y (imaginary) axis the point is. If you draw a line connecting the origin and the point a+bi then notice that you've constructed a triangle with sides a, b, and sqrt(a^2+b^2). Recall that tan of an angle = opp/adj, applying this to the triangle gives that the angle between the x-axis and the line from the origin is equal to arctan(b/a). This is exactly what the argument of a complex number is, the angle between the x-axis and the line connecting the number and the origin.

MS
Answered by Martin S. Further Mathematics tutor

12803 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The function f is defined for x > 0 by f (x) = x^1n x. Obtain an expression for f ′ (x).


Find the four complex roots of the equation z^4 = 8(3^0.5+i) in the form z = re^(i*theta)


Use algebra to find the set of values of x for which mod(3x^2 - 19x + 20) < 2x + 2.


Show that G = {1, -1} is a group under multiplication.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences