Why is the argument of a+bi equal to arctan(b/a)?

Think about the point a+bi on the complex plane. Specifically, a is how far along the x (real) axis, and b is how far up the y (imaginary) axis the point is. If you draw a line connecting the origin and the point a+bi then notice that you've constructed a triangle with sides a, b, and sqrt(a^2+b^2). Recall that tan of an angle = opp/adj, applying this to the triangle gives that the angle between the x-axis and the line from the origin is equal to arctan(b/a). This is exactly what the argument of a complex number is, the angle between the x-axis and the line connecting the number and the origin.

MS
Answered by Martin S. Further Mathematics tutor

14187 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do you find the square roots of a complex number?


Calculate: ( 2+i√(5) )( √(5)-i).


Find the general solution of the differential equation d^2y/dx^2 - 5*dy/dx + 4y = 2x


Let f(x)=x^x for x>0, then find f'(x) for all x>0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning