Why is the argument of a+bi equal to arctan(b/a)?

Think about the point a+bi on the complex plane. Specifically, a is how far along the x (real) axis, and b is how far up the y (imaginary) axis the point is. If you draw a line connecting the origin and the point a+bi then notice that you've constructed a triangle with sides a, b, and sqrt(a^2+b^2). Recall that tan of an angle = opp/adj, applying this to the triangle gives that the angle between the x-axis and the line from the origin is equal to arctan(b/a). This is exactly what the argument of a complex number is, the angle between the x-axis and the line connecting the number and the origin.

MS
Answered by Martin S. Further Mathematics tutor

14163 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Explain why the equation tanx + cotx = 1 does not have real solutions.


What is the value of x from (x+2)^2=4


Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions


y = artanh(x/sqrt(1+x^2)) , find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning