Find the square root of complex number 3 + 4i

Strategy: write down an equation satisfied by the square root, and solve it algebraically.  Method:  square root x+iy  satisfies (x+iy)2 = 3 + 4i. Expand: x2-y2 +2xyi = 3+4i. Comparing coefficients gives:   x2-y2 =3 and 2xy =4. Then substitute y:  x2 -4/x2 = 3. Rearrange to get quadratic in x2 : (x+1)(x2 -4) = 0. x can't be imaginary (by definition) so x= +/- 2. Plug in to equation 2xy = 4, get y = +/- 1. So square root is +/- (2+i).

JS
Answered by Jakob S. Further Mathematics tutor

27051 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Simplify (2x^3+8x^2+17x+18)/(x+2)


Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.


Show that the matrix A is non-singular for all real values of a


A=[5k,3k-1;-3,k+1] where k is a real constant. Given that A is singular, find all the possible values of k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences