Find the square root of complex number 3 + 4i

Strategy: write down an equation satisfied by the square root, and solve it algebraically.  Method:  square root x+iy  satisfies (x+iy)2 = 3 + 4i. Expand: x2-y2 +2xyi = 3+4i. Comparing coefficients gives:   x2-y2 =3 and 2xy =4. Then substitute y:  x2 -4/x2 = 3. Rearrange to get quadratic in x2 : (x+1)(x2 -4) = 0. x can't be imaginary (by definition) so x= +/- 2. Plug in to equation 2xy = 4, get y = +/- 1. So square root is +/- (2+i).

JS
Answered by Jakob S. Further Mathematics tutor

27265 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What is the meaning of having a 3 by 3 matrix with determinent 0. Both geometrically and algebriaclly.


How can we solve a limit having an indetermination of the type 0/0 or infinity divided by infinity?


How do I construct a proof by induction?


Find the complementary function to the second order differential equation d^2y/dx^2 - 5dy/dx + 6x = x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences