Find the square root of complex number 3 + 4i

Strategy: write down an equation satisfied by the square root, and solve it algebraically.  Method:  square root x+iy  satisfies (x+iy)2 = 3 + 4i. Expand: x2-y2 +2xyi = 3+4i. Comparing coefficients gives:   x2-y2 =3 and 2xy =4. Then substitute y:  x2 -4/x2 = 3. Rearrange to get quadratic in x2 : (x+1)(x2 -4) = 0. x can't be imaginary (by definition) so x= +/- 2. Plug in to equation 2xy = 4, get y = +/- 1. So square root is +/- (2+i).

JS
Answered by Jakob S. Further Mathematics tutor

27264 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I find and plot the roots of a polynomial with complex roots on an Argand diagram? e.g. f(z) =z^3 -3z^2 + z + 5 where one of the roots is known to be 2+i


Find the set of values for which: 3/(x+3) >(x-4)/x


Differentiate x = sinhy with respect to x


Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences