Find the square root of complex number 3 + 4i

Strategy: write down an equation satisfied by the square root, and solve it algebraically.  Method:  square root x+iy  satisfies (x+iy)2 = 3 + 4i. Expand: x2-y2 +2xyi = 3+4i. Comparing coefficients gives:   x2-y2 =3 and 2xy =4. Then substitute y:  x2 -4/x2 = 3. Rearrange to get quadratic in x2 : (x+1)(x2 -4) = 0. x can't be imaginary (by definition) so x= +/- 2. Plug in to equation 2xy = 4, get y = +/- 1. So square root is +/- (2+i).

JS
Answered by Jakob S. Further Mathematics tutor

28234 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


What are the conditions required for the poisson distribution?


find general solution to: x(dy/dx) + 2y = 4x^2


A parabola with equation y^2=4ax for constant a is translated by the vector (2,3) to give the curve C. The curve C passes through the point (4,7), what is the value of a?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning