The function f is defined for x > 0 by f (x) = x^1n x. Obtain an expression for f ′ (x).

By taking the natural log on both sides we can see that: ln(f(x)) = ln(x)^2 This is a more familiar expression that we know how to differentiate  LHS: f '(x)/f(x), RHS: 2*ln(x)/x By rearranging this we can see that  f '(x) = f(x)2ln(x)/x Substituting our original f(x) expression back into this we find that: f '(x) = x^ln(x)2ln(x)/x = x^(ln(x)-1)2ln(x).

SE
Answered by Steven E. Further Mathematics tutor

2798 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.


Find the modulus and argument of the complex number 1+2i


Give the general solution to (d2y/dx2) - 2dy/dx -3y = 2sinx


It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning