The function f is defined for x > 0 by f (x) = x^1n x. Obtain an expression for f ′ (x).

By taking the natural log on both sides we can see that: ln(f(x)) = ln(x)^2 This is a more familiar expression that we know how to differentiate  LHS: f '(x)/f(x), RHS: 2*ln(x)/x By rearranging this we can see that  f '(x) = f(x)2ln(x)/x Substituting our original f(x) expression back into this we find that: f '(x) = x^ln(x)2ln(x)/x = x^(ln(x)-1)2ln(x).

SE
Answered by Steven E. Further Mathematics tutor

2787 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Explain why the equation tanx + cotx = 1 does not have real solutions.


Integrate (x+4)/(x^2+2x+2)


Prove by induction that 11^n - 6 is divisible by 5 for all positive integer n.


In simple harmonic motion, where would the object have the largest speed. If the angular velocity is 2 rad s^-1, and the amplitude is 1m, what is the largest speed obtained by the object?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning