The function f is defined for x > 0 by f (x) = x^1n x. Obtain an expression for f ′ (x).

By taking the natural log on both sides we can see that: ln(f(x)) = ln(x)^2 This is a more familiar expression that we know how to differentiate  LHS: f '(x)/f(x), RHS: 2*ln(x)/x By rearranging this we can see that  f '(x) = f(x)2ln(x)/x Substituting our original f(x) expression back into this we find that: f '(x) = x^ln(x)2ln(x)/x = x^(ln(x)-1)2ln(x).

SE
Answered by Steven E. Further Mathematics tutor

2333 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to the second order differential equation x'' - 2x' + x = e^(2t).


For what values of x is Cosh^2(x) - Sinh(x) = 5 Give your answer in the form of a logarithm


Cube roots of 8?


Find the stationary points of the function z = 3x(x+y)3 - x3 + 24x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences