How do I sketch accurate graphs for rational functions in a short amount of time? (I.e. A step by step guide of sketching graphs)

Often in Further Pure modules for various exam boards a common question in the exam paper will be to sketch a graph for a rational function. The step by step aproach I used is as follows:

  1. Change the form (if required) of the function to a form where the denominators of fractions have greater order than numerators. Find points of intersection with the axis and min or max points and labelling them on the graph.

  2. Find the limits of the function (by looking at denominators) and drawing dotted lines on the graph to represent these limits as linear functions (i.e. lines on the graph)

  3. See which side of limit the graph will travel along on by testing values in function. Then drawing appropriate short lines so you know where the connect the graph.

  4. Finally, mark any points where the function intersects the limits and connect the graphs lines together smoothly.

DH
Answered by Darshan H. Further Mathematics tutor

2225 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


Solve the following complex equation: '(a + b)(2 + i) = b + 1 + (10 + 2a)i' to find values for 'a' and 'b'


A curve has equation y=(2-x)(1+x)+3, A line passes through the point (2,3) and the curve at a point with x coordinate 2+h. Find the gradient of the line. Then use that answer to find the gradient of the curve at (2,3), stating the value of the gradient


Show that cosh^2(x)-sinh^2(x)=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences