If z=4+i, what is 1/z? (in the form a+bi)

1/z =1/(4+i) Multiply both top and bottom by the complex conjugate, z* = 4 - i, 1/z = (4-i)/((4+i)(4-i)) = (4-i)/(16+4i-4i-i2) = (4-i)/17 ans: 4/17 - i/17

RH
Answered by Rachel H. Further Mathematics tutor

3157 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A circle has equation x^{2}-8x+y^{2}-6y=d. A line is tangent to this circle and passes through points A and B, (0,17) and (17,0) respectively. Find the radius of the circle.


find the stationary point of the curve for the equation y=x^2 + 3x + 4


A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.


f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning