Can you jump a motorcycle into space?

[This question and answer are intended as an example of part of a tutorial on the conservation of energy for an A-Level physics student.]

Question:

A daredevil is planning the ultimate feat: jumping a motorcycle into space from a standstill. How big does her fuel tank need to be?

Assume the following:

Space begins at 100 km above sea level.

The acceleration due to gravity is 9.81 ms-2 regardless of altitude.

The energy density of fuel is 50 MJ/kg.

The motorcycle and rider together weigh 500 kg.

No energy is lost by the rider and motorcycle to the surroundings.

Answer:

The simplest way to tackle this problem is by conservation of energy. As with most problems of this type, we’ll look separately at the initial situation and the final situation, then assume no energy is lost in between.

Initial situation:

The motorcycle, rider and fuel are at sea level. Call the mass of the motorcycle and rider together m, and the mass of the fuel M. The only energy in the system is the chemical energy U of the fuel:

Einitial = U,

and U = uV,

where u is the energy density of the fuel and V is its volume.

Final situation:

If the rider only just reaches her goal, then she and the motorcycle only just reach the 100 km level before falling back to Earth. At that point, there is no fuel left, and they are still for just an instant. Therefore the only energy in the system is then the gravitational potential energy of the rider and motorcycle:

Efinal = mgh,

where h = 100 km.

Conservation of energy:

Because no energy was lost to the surroundings, we have Efinal = Einitial, so:

U = mgh,

or

uV = mgh.

We want the volume of the fuel tank, so:

V = mgh/u.

Substituting in all the values, we obtain:

V = (500 kg)(9.81 ms-2)(100 km) / (50 MJ/kg)

Which evaluates to:

V = 9.8 m3 = 9,800 L.

GV
Answered by Gabriel V. Physics tutor

3651 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A roller coaster has a loop, r = 20m, how fast should it travel so that riders don't fall out?


An atom can become excited by the absorption of photons. Explain why only photons of certain frequencies cause excitation in a particular atom.


Two electrons are a distance r apart, the first electron exerts a force F on the second electron. a) What force does the second electron exert on the first? b) In terms of r, at what distance is the force that the first electron exerts on the second F/9?


How do I find an area in m^2 when I'm given lengths in cm?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning