By Differentiating from first principles, find the gradient of the curve f(x) = x^2 at the point where x = 2

This qustion can be solved easily using the gradient formular, m = ∆y/∆x, and some simple algrebra.

The gradient at the point x = 2 is calculated by find the gradient of a tangent at x = 2. To find this we imagine we are drawing a line from the point at x = 2, to a point on the line very close to it, a distance of dx along, and [f(dx) - f(x)] up.

Using the gradient m = ∆y/∆x, and subbing in values for change in x and change in y we get:

dy/dx = [f(x + dx) - f(x)]/dx

This however is the gradient along the line; the gradient at the point x = 2 is found by finding the limit as dx tends to zero, or as the line becomes infintesimently small.

This gives:

dy/dx = lim x -> 0 [(x + dx)^2 - x^2)/dx

= lim x -> 0 [x^2 + 2xdx + dx^2/dx

= lim x -> 0 [2x + dx]

= 2x

it is importnt to now finish the question and fin the gradient at x = 2

dy/dx = 2 x 2 = 4

HF
Answered by Hugo F. Further Mathematics tutor

2802 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues and eigenvectors of the following 3x3 matrix (reading left to right, top to bottom): (1 0 2 3 1 1 2 0 1)


I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


Expand (1+x)^3. Express (1+i)^3 in the form a+bi. Hence, or otherwise, verify that x = 1+i satisfies the equation: x^3+2*x-4i = 0.


How do I know when I should be using the Poisson distribution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences