How to calculate the integral of sec(x)?

First of all, multiply secx by (secx+tanx)/(secx+tanx). Use the substitution u=secx+tanx, so that du=(secxtanx+sec2x) dx and then substitute both terms. Calculate the integral of the du/u arriving at ln|u|+C. Then put in the substituted function of x. The result is ln|secx+tanx|+C.

CK
Answered by Cezary K. Further Mathematics tutor

6516 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution of the second order differential equation y''(t)+y(t) = 5exp(2t)


Find the root of the complex 3+4i


Given that y = cosh^-1 (x) , Show that y = ln(x+ sqrt(x^2-1))


Use de Moivre's theorem to calculate an expression for sin(5x) in terms of sin(x) only.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences