How to calculate the integral of sec(x)?

First of all, multiply secx by (secx+tanx)/(secx+tanx). Use the substitution u=secx+tanx, so that du=(secxtanx+sec2x) dx and then substitute both terms. Calculate the integral of the du/u arriving at ln|u|+C. Then put in the substituted function of x. The result is ln|secx+tanx|+C.

CK
Answered by Cezary K. Further Mathematics tutor

8603 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

I don't understand how proof by mathematical induction works, can you help?


Prove that ∑(1/(r^2 -1)) from r=2 to r=n is equal to (3n^2-n-2)/(4n(n+1)) for all natural numbers n>=2.


A useful practice: how to determine the number of solutions of a system of linear equations beforehand


How to determine the modulus of a complex number?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning