Prove ∑r^3 = 1/4 n^2(n+1)^2

Proof by induction

Base Case when n=1 

LHS = 1^3=1 RHS= 1/4(1^2)(1+1)^2=1/4(1)(2^2)=1/4(4)

Assume true for n=k 

so  ∑r^3= 1/4k^2(k+1)^2

For n=k+1 

∑r^3 = ∑k terms + (k+1)^3 = 1/4(k^2)(k+1)^2 + (k+1)^3

= 1/4(k^2)(k+1)^2 + (k+1)^2(k+1)

=1/4(k^2+4k+4)(k+1)^2 

Completing the square k^2+ 4k + 4 = (k+2)^2

=1/4(k+2)^2(k+1)^2

Same form as above with n replaced by k+1

Therefore it is true for n=k+1 if true for n=k but true for n=1 so true for n=2 and so on.

JO
Answered by James O. Further Mathematics tutor

11134 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Using mathematical induction, prove that n^3+2n is divisible by 3 for all integers n


Let E be an ellipse with equation (x/3)^2 + (y/4)^2 = 1. Find the equation of the tangent to E at the point P where x = √3 and y > 0, in the form ax + by = c, where a, b and c are rational.


What is sin(x)/x for x =0?


Prove De Moivre's by induction for the positive integers


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences