Prove ∑r^3 = 1/4 n^2(n+1)^2

Proof by induction

Base Case when n=1 

LHS = 1^3=1 RHS= 1/4(1^2)(1+1)^2=1/4(1)(2^2)=1/4(4)

Assume true for n=k 

so  ∑r^3= 1/4k^2(k+1)^2

For n=k+1 

∑r^3 = ∑k terms + (k+1)^3 = 1/4(k^2)(k+1)^2 + (k+1)^3

= 1/4(k^2)(k+1)^2 + (k+1)^2(k+1)

=1/4(k^2+4k+4)(k+1)^2 

Completing the square k^2+ 4k + 4 = (k+2)^2

=1/4(k+2)^2(k+1)^2

Same form as above with n replaced by k+1

Therefore it is true for n=k+1 if true for n=k but true for n=1 so true for n=2 and so on.

JO
Answered by James O. Further Mathematics tutor

12240 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the four roots of the equation z^4 = + 8(sqrt(3) + i), in the form z = r*e^(i*theta). Draw the roots on an argand diagram.


Find the general solution for the determinant of a 3x3 martix. When does the inverse of this matrix not exist?


The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.


Find the square roots of 2 + isqrt(5)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning