Newton's Law of Gravitation states: F=GMm/r^2, where G is the gravitational constant (6.67×10−11m^3kg^−1s^−2). Kepler's Third Law, states t^2=kR^3. The mass of the sun is 1.99x10^30kg. Find the value of k and its units

F=GMm/r2=mv2/r, v=2pir/t

equating the two values for F and remembering to include the equation for v, GMm/r^2 = m(2pir/t^2)^2/r. Rearranging to find t^2, t^2 = 4pi^2r^3/GM where 4pi^2/GM equals the constant k. Therefore for the purpose of the question, k = 2.97x10^-19s^-2m^-3.

SB
Answered by Sam B. Physics tutor

16937 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain why a transformer only works with an alternating current and doesn't with a direct current.


Define a "Vector Quantity" and list 2 examples.


Two railway trucks of masses m and 3m move towards each other in opposite directions with speeds 2v and v respectively. These trucks collide and stick together. What is the speed of the trucks after the collision?


If an alpha particle (Z = 2) of kinetic energy 7 MeV is incident on a gold nucleus (Z = 79), what is its closest distance of approach?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning