Newton's Law of Gravitation states: F=GMm/r^2, where G is the gravitational constant (6.67×10−11m^3kg^−1s^−2). Kepler's Third Law, states t^2=kR^3. The mass of the sun is 1.99x10^30kg. Find the value of k and its units

F=GMm/r2=mv2/r, v=2pir/t

equating the two values for F and remembering to include the equation for v, GMm/r^2 = m(2pir/t^2)^2/r. Rearranging to find t^2, t^2 = 4pi^2r^3/GM where 4pi^2/GM equals the constant k. Therefore for the purpose of the question, k = 2.97x10^-19s^-2m^-3.

SB
Answered by Sam B. Physics tutor

15312 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How would you integrate ln(x)


On a speed/time graph: a) how would a constant deceleration be illustrated? b) how would you use the graph to calculate total distance travelled?


What path would a charge moving in the x-y plane track, in the presence of a uniform magnetic field out of the page?


A stone is thrown horizontally at 5m/s from a platform 10m above ground. Find time till impact with ground.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences