A basketball player throws his ball vertically upwards with an initial speed of v=40 m/s. Ignore air resistance. What is the speed of the ball at half of the maximum height?

Since we are neglecting air resistance the energy of the ball is conserved. We set the gravitational potential energy to be U=0 at h=0. Applying conservation of energy at h=0 and h=hmax , we get: U+ K1=U2 +K2(1), at h=0 the potential energy is U1=0 since we did set it so and at the maximum height the speed is 0, therefore K2=0. So, (1) becomes mv2/2=mghmax (2).

Now applying conservation of energy at h=0 and h=hmax/2: mu2/2+mghmax/2=mv2/2, and using (2) we get, mu2/2 +mv2/4=mv2/2, which simplifies to: u2=v2/2, therefore the speed of the ball at h=hmax /2 is u=v/sqrt(2)=28.28 m/s

AM
Answered by Alexandros M. Physics tutor

5457 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

From what height, h, should a rail-cart fall to complete a loop-the-loop of radius r without falling off a the track? Assume the track on which the rail-cart travels is smooth and express h in terms of r.


Given the rate of thermal energy transfer is 2.7kW, the volume of the water tank is 4.5m^3, the water is at a temperature of 28oC, density of water is 1000kgm-3 & c=4200Jkg-1K-1. Calculate the rise in water temperature that the heater could produce in 1hr


I do 400J of work compressing a gas, but I maintain the same temperature. What is the delta U, Q and W in this case?


Draw the electric field lines produced by a negative point charge and calculate the electric field strength at a distance of 50mm from a point charge of size -30nC.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning