A basketball player throws his ball vertically upwards with an initial speed of v=40 m/s. Ignore air resistance. What is the speed of the ball at half of the maximum height?

Since we are neglecting air resistance the energy of the ball is conserved. We set the gravitational potential energy to be U=0 at h=0. Applying conservation of energy at h=0 and h=hmax , we get: U+ K1=U2 +K2(1), at h=0 the potential energy is U1=0 since we did set it so and at the maximum height the speed is 0, therefore K2=0. So, (1) becomes mv2/2=mghmax (2).

Now applying conservation of energy at h=0 and h=hmax/2: mu2/2+mghmax/2=mv2/2, and using (2) we get, mu2/2 +mv2/4=mv2/2, which simplifies to: u2=v2/2, therefore the speed of the ball at h=hmax /2 is u=v/sqrt(2)=28.28 m/s

AM
Answered by Alexandros M. Physics tutor

5283 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the maximum speed of an electron emitted from a metal surface with a threshold frequency of 5.706*10^(14) by light with a wavelength of 350nm?


A car of mass 800 kg is accelerated horizontally by constant net force of 1920 N for 9 s. It then breaks for 2 s, but drives off a 5 m high cliff. If μ = 0.85, what is the total horizontal distance travelled by car and its velocity? Ignore air resistance.


What is the Strong Nuclear Force?


Is a photon a wave or a particle??


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences