Using your knowledge of complex numbers, such as De Moivre's and Euler's formulae, verify the trigonometric identities for the double angle.

de Moivre's: (cos(x)+isin(x))n=cos(nx)+isin(nx) set n=2 (cos(x)+isin(x))2=cos2(x)+2isin(x)cos(x)-sin2(x), which, according to de Moivre's cos2(x)+2isin(x)cos(x)-sin2(x)=cos(2x)+isin(2x) We notice that on both the RHS and LHS we have real and complex terms, which means that the real part on one side is equal to the real part of the other, and the same stands for the imgainary bits: cos(2x)=cos2(x)-sin2(x) sin(2x)=2sin(x)cos(x) These identities are the correct ones.

CP
Answered by Cezar P. Further Mathematics tutor

3456 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the determinant of matrix M. [3]


How to approximate the Binomial distribution to the Normal Distribution


How do I prove that the differential of coshx is equal to sinhx?


A curve has polar equation r = 1 + cos THETA for 0 <= THETA <= 2Pi. Find the area of the region enclosed by the curve


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences