Find the integrating factor of the following first order ODE: dx/dt = -2tx +t.

Firstly rearrange the differential equation to fit the form dx/dt +P(t)x = Q(t). The integrating factor is then found by using the formula:

u = EXP(INTG(P(t))). We know that P(t) = 2t and so by integrating we find that INTG(P(t)) (which means the integral of P(t)) is equal to t2. And so our integrating factor u = et^2.

Note: this is used in solving first order differential equations; by multiplying each term by the integrating factor and then some clever observation, you will see that the equation will now resemble the product rule formula. This can be used to solve the first order ODE as you will see in future questions.

AT
Answered by Adam T. Further Mathematics tutor

7888 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A particle is moving in a straight line with simple harmonic motion. The period of the motion is (3pi/5)seconds and the amplitude is 0.4metres. Calculate the maximum speed of the particle.


A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0. Find dy/dx and d^2y/dx^2. Verify that C has a stationary point when x = 4


(FP1) Given k = q + 3i and z = w^2 - 8w* - 18q^2 i, and if w is purely imaginary, show that there is only one possible non-zero value of z


The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning