In a particle accelerator, you accelerate an electron. Afterwards, you measure it's energy to be 350 keV. Tell my why you can't find the speed from this energy using your knowledge of classical mechanics.

In order to see what the problem is, I will attempt to find this speed. 350keV=5.6110-14 J Ek=1/2 * mv2 =>  v=sqrt(2Ek/m) By plugging in numbers, we find that the velocity of the electron, v=3.51108. This velocity is bigger then the speed of light c=3108, and it is a known fact that nothing can travel faster than light. This means that relativistic effects must've taken place, which prevented the particle from reaching the speed of light, but allowed it to have such a high energy.

CP
Answered by Cezar P. Physics tutor

2187 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A body with speed v is projected from the surface of the earth(mass M & radius R). Find the maximum distance from the earth that this body reaches before returning back to earth, as a function of the initial speed v, M, R and the gravitational constant G


A student is measuring the acceleration due to gravity, g. They drop a piece of card from rest, from a vertical height of 0.75m above a light gate. The light gate measures the card's speed as it passes to be 3.84 m/s. Calculate an estimate for g.


How do you work out the work out the current through resistors in parallel?


A stationary radium atom decays, emiting an alpha particle. Why is the recoil speed of the nucleus small compared to the alpha particle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning