In a particle accelerator, you accelerate an electron. Afterwards, you measure it's energy to be 350 keV. Tell my why you can't find the speed from this energy using your knowledge of classical mechanics.

In order to see what the problem is, I will attempt to find this speed. 350keV=5.6110-14 J Ek=1/2 * mv2 =>  v=sqrt(2Ek/m) By plugging in numbers, we find that the velocity of the electron, v=3.51108. This velocity is bigger then the speed of light c=3108, and it is a known fact that nothing can travel faster than light. This means that relativistic effects must've taken place, which prevented the particle from reaching the speed of light, but allowed it to have such a high energy.

CP
Answered by Cezar P. Physics tutor

2295 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Find an expression for the escape velocity of a test object.


A block of mass (m) is placed on a rough slope inclined at an angle (a) to the horizontal, find an expression in terms of (a) for the smallest coefficient of friction (x), such that the block does not fall down the slope.


An electron is emitted from a cathode in an electron gun, with a potential difference of 150kV. Find the velocity of the electron after it is accelerated and find the De Broglie wavelength.


A cannon can fire a cannonball at 20m/s. A sandpit is placed at a distance of 40m away. At what angle should the cannon be fired in order for the cannonball to land in the sand.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning