A 1kg spring has an unloaded length 10cm and has an elastic constant of 100N/m. It is compressed to 6cm then placed facing upwards on the floor. When released it travels vertically upwards. How high does it jump? You may assume no energy is lost to heat o

This may at first look like a horrible SUVAT problem, but it is actually testing your ability to calculate energy transfers. It is helpful for these questions to first draw a diagram then work out what energy transfers are taking place. (Even if the diagram is unhelpful in calculation, it will help you to visualise the scenario.) In this case because the spring is being compressed, it now has Elastic Potential Energy. When the spring is released, this energy is converted into Kinetic Energy. The assumptions tell us no energy is lost in the transfers, so the Elastic Potential Energy must equal Kinetic Energy. When the spring is as the highest point of its jump, it will have no kinetic energy as at this point, it will not be moving (just for a split second). Therefore we know all of its Kinetic Energy must have been transferred to Gravitational Potential Energy. We said earlier that the Kinetic Energy at the point of release was equal to the Elastic Potential Energy therefore the Elastic Potential Energy must equal the Gravitational Energy at the highest point.

The equation for Elastic Potential Energy Is E= 1/2 x k x ΔL2 where E is Energy, k is the elastic constant and ΔL is the change in length of the spring when compressed. From the question we can extract the relevant numbers to calculate E: k=100N/m and ΔL = 10cm – 6cm = 4cm which we can convert to metres by dividing by 100 to get ΔL = 0.04m. Type the numbers into a calculator to get E = 2J. Finally, the equation for gravitational potential energy is E = m x g x h which we can rearrange to get height (h) as the subject: h = E / (m x g). m is mass (1kg) and g is gravity on earth which is always 9.81m/s2 (this will be on any formula sheet). Use the E we worked out earlier and the values of m and g given to calculate h by typing these into a calculator using the rearranged equation to get height = 0.204m

PW
Answered by Philip W. Physics tutor

3585 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the total capacitance of a circuit containing a 3microfarad capacitor and a 2microfarad capacitor in series.


Explain how a standing wave is formed


Use band theory to explain the changes in the resistance of an intrinsic semiconductor as temper changes.


A spherical object of mass 150kg is orbiting the Earth. The distance between the centre of the object and the centre of the Earth is 25,000m. What is the kinetic energy of the object?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning