Prove e^(ix) = cos (x) + isin(x)

We first write each side of the equation using the maclaurin series for each function.

eix = 1 + ix + (ix)2/2! + (ix)3/3! + (ix)4/4! + ......

eix = 1 + ix - x2/2! - ix3/3! + x4/4! + .....

cos(x) + isin(x) = (1 - x2/2! + x4/4! - x6/6! +....) + i(x - x3/3! + x5/5! - x7/7! + ......)

writing the above equation in increasing powers of x:

cos(x) + isin(x) = 1 + ix - x2/2! - ix3/3! + x4/4! + ....

As seen the maclaurin series for each side of the equation are the same hence eix = cos(x) + isin(x)

PM
Answered by Pavan M. Further Mathematics tutor

6763 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express f(x) = ln(x+1) as an infinite series in ascending powers of x up to the 3rd power of x


FP3- Find the eigenvalues and the eigenvector for the negative eigenvalue, from this 2x2 matrix of columns (2,1) and (3,0)


Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.


How do I integrate arctan(x) using integration by parts?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences