Prove e^(ix) = cos (x) + isin(x)

We first write each side of the equation using the maclaurin series for each function.

eix = 1 + ix + (ix)2/2! + (ix)3/3! + (ix)4/4! + ......

eix = 1 + ix - x2/2! - ix3/3! + x4/4! + .....

cos(x) + isin(x) = (1 - x2/2! + x4/4! - x6/6! +....) + i(x - x3/3! + x5/5! - x7/7! + ......)

writing the above equation in increasing powers of x:

cos(x) + isin(x) = 1 + ix - x2/2! - ix3/3! + x4/4! + ....

As seen the maclaurin series for each side of the equation are the same hence eix = cos(x) + isin(x)

PM
Answered by Pavan M. Further Mathematics tutor

7822 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express the complex number (1+i)/(1-i) in the form x+iy


Given z=cosx+isinx, show cosx=1/2(z+1/z)


Express sin(5theta) in terms of sin(theta) and powers of sin(theta) only.


Two planes have eqns r.(3i – 4j + 2k) = 5 and r = λ (2i + j + 5k) + μ(i – j – 2k), where λ and μ are scalar parameters. Find the acute angle between the planes, giving your answer to the nearest degree.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning