An isotope of 238,92-Uranium decays into a stable isotope of 206,82-Lead through a series of alpha and beta decays, how many of each does it go through?

This is a good example of where simplification can make an otherwise tricky question a lot easier. It is easy to get confused trying to work out different isotopes and the extra products of the decays, but all this can be ignored, and the question is just a simple maths problem. Firstly, we must consider what each decay does to the atomic number and proton number of the isotope. Alpha decay emits a helium nucleus, and so reduces the atomic number by 4 and the proton number by 2. Beta decay turns a proton into an electron, and increases the proton number by 1, leaving the atomic number unaffected. Using this information, we can work out that in order to reduce the atomic number from 238 to 206 we must use alpha decay, because beta doesn’t affect the proton number. Therefore 8 alpha decays are needed, this brings the atomic number to the required 206, but leaves the proton number at 76. To bring this up to the required 82 for lead, 6 beta decays are necessary. And so, the answer is 8 alpha decays and 6 beta decays.

Answered by Nathan M. Physics tutor

1741 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two balls of mass 3kg and 7 kg respectively move towards one another with speeds 5ms^-1 and 2ms^-1 respectively on a smooth table. If they collide and join, what velocity do they move off with?


Why is it important that the baryon and lepton numbers of an interaction are conserved?


The Large Hadron Collider (LHC) of circumference 27km uses magnetic fields to accelerate a proton repeatedly in a circular path. Calculate the flux density of a uniform magnetic field required for the proton to travel at a tenth of the speed of light.


A cyclist rides 10km. In the first 5km, they climb a hill, averaging 10km/h. In the second 5km, they descend the hill, averaging 30km/h. What is their average speed over the full 10km?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy