How do you calculate the cross product of two vectors?

To calculate the cross product of two vectors you take the coordinates of vector 1 which are (x1,y1,z1) and the coordinates of vector 2 which are (x2,y2,z2) and put these coordinates into a 3x3 matrix. On the first row of the matrix you have i, j, k; on the second row of the matrix you have x1, y1, z1; and on the bottom row x2, y2, z2. You then calculate the determinant of this matrix.

To do this you multiply i by (y1*z2 - z1*y2) then subtract j multiplied by (x1*z3 - x3*z1) and add k multiplied by (x1*y2 - x2*y1), the resultant vector is the cross product of the original vectors.

MK
Answered by Michael K. Further Mathematics tutor

2461 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What are the conditions required for the poisson distribution?


By using an integrating factor, solve the differential equation dy/dx + 4y/x = 6x^-3 (6 marks)


Find the eigenvalues and eigenvectors of the following 3x3 matrix (reading left to right, top to bottom): (1 0 2 3 1 1 2 0 1)


Write the Maclaurin’s series for f(x)=sin(3x)+e^x up to the third order


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning