How do you calculate the cross product of two vectors?

To calculate the cross product of two vectors you take the coordinates of vector 1 which are (x1,y1,z1) and the coordinates of vector 2 which are (x2,y2,z2) and put these coordinates into a 3x3 matrix. On the first row of the matrix you have i, j, k; on the second row of the matrix you have x1, y1, z1; and on the bottom row x2, y2, z2. You then calculate the determinant of this matrix.

To do this you multiply i by (y1*z2 - z1*y2) then subtract j multiplied by (x1*z3 - x3*z1) and add k multiplied by (x1*y2 - x2*y1), the resultant vector is the cross product of the original vectors.

MK
Answered by Michael K. Further Mathematics tutor

2888 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Use algebra to find the set of values of x for which mod(3x^2 - 19x + 20) < 2x + 2.


What is the value of x from (x+2)^2=4


You have three keys in your pocket which you extract in a random way to unlock a lock. Assume that exactly one key opens the door when you pick it out of your pocket. Find the expectation value of the number of times you need to pick out a key to unlock.


Use de Moivre’s theorem to show that, (sin(x))^5 = A sin(5x) + Bsin(3x) + Csin(x), where A , B and C are constants to be found.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning