Differentiate: f(x)=(ax^2 + bx + c) ln(x + (1+x^2)^(1/2)) + (dx + e) (1 + x^2)^(1/2). Hence integrate i) ln(x + (1 + x^2)^(1/2)), ii) (1 + x^2)^(1/2), iii) x ln(x + (1 + x^2)^(1/2)).

Differentiate equation: f'(x) = (2ax + b) ln(x + (1+x^2)^(1/2)) + ((a + 2d)x^2 + (b + c)x + (c+d)) (1 + x^2)^(-1/2).

Select correct values for constants to get:

i) x ln(x + (1+x^2)^(1/2)) - (1 + x^2)^(1/2) + C

ii) 1/2 ln(x + (1+x^2)^(1/2)) + x/2 (1 + x^2)^(1/2) + C

iii) ((x^2)/2 + 1/4) ln(x + (1+x^2)^(1/2)) - x/4 (1 + x^2)^(1/2) + C

ME
Answered by Morgan E. STEP tutor

3217 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Show that i^i = e^(-pi/2).


What is the largest positive integer that always divides n^5-n^3 for n a natural number.


How can I integrate e^x sin(x)?


Differentiate x^x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences