P(A)=0.2, P(A|B) = 0.3 and P(AuB)=0.6. Find i P(B) ii P(B'|A')

i. P(AuB) = P(A) + P(B) - P(AnB) 

P(AnB) = P(A|B)P(B) = 0.3P(B)

P(AuB) = P(A) + 0.7 P(B) --> 0.6 = 0.2 + 0.7 P(B) --> P(B) = 4/7

ii. P(B'|A') = P(A'nB')/P(A')

P(A'nB') = 1 - P(AuB)

P(B'|A') = 0.4/0.8 = 1/2

WS
Answered by Will S. Further Mathematics tutor

8967 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do you plot a complex number in an Argand diagram?


Find the eigenvalues and eigenvectors of A = ([2, 0 , 0], [0, 1, 1], [0, 3, 3])


A curve has polar equation r = 1 + cos THETA for 0 <= THETA <= 2Pi. Find the area of the region enclosed by the curve


Let f(x)=x^x for x>0, then find f'(x) for all x>0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences