How do you find the matrix corresponding to a transformation?

Let's say that T is a transformation of the two dimensional plane. Remember that we have the two standard unit vectors (1,0) and (0,1). These are, respectively, the unit vectors pointing in the positive direction on the x-axis and the y-axis. We first look at what the transformation does to these two vectors. This gives us two new vectors T(1,0) and T(0,1) which form the columns of the matrix corresponding to the transformation T.

For example, if T is the reflection in the y-axis we get the following. Since we reflect in the y-axis, all points on the y-axis stay fixed and so T(0,1) = (0,1). On the other hand, by reflection (1,0) in the y-axis we get the point (-1,0). Therfore, the matrix has columns (-1,0) and (0,1). 

RF
Answered by Robin F. Further Mathematics tutor

2147 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I find the inverse of a 3x3 matrix?


Solve the following inequality: 2x^2 < x+3


A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.


How can you find the two other roots of a cubic polynomial if you're given one of the roots (which is a complex number)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences