Given that z = a + bj, find Re(z/z*) and Im(z/z*).

By definition z*  = a - bj.

We can write z/z* = ((a+bj)/(a-bj))*(a+bj)/(a+bj).

We calculate this to be z/z* = (a^2-b^2)/(a^2+b^2) + j(2ab)/(a^2+b^2).

Therefore, Re(z/z*) = (a^2-b^2)/(a^2+b^2).

Im(z/z*) = (2ab)/(a^2+b^2).

PJ
Answered by Penelope J. Further Mathematics tutor

6170 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the shortest distance between the lines r = (1, 5, 6) + y(-2, -1, 0) and r = (1, 7, -3) + z(2, 0, 4)


a) Find the general solution to the differential equation: f(x)=y''-12y'-13y=8. b) Given that when x=0, y=0 and y'=1, find the particular solution to f(x).


How do you find the cube root of z = 1 + i?


Prove by induction the sum of the natural numbers from 1 to n is n(n+1)/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning