Find the set of values of x for which (x+4) > 2/(x+3)

This is an example of an inequalities question from FP2. For this, we will need to use the tools learned in this chapter. To start with, it may be tempting to multiply both sides of the inequality by (x+3) to get rid of the fraction, but doing this is wrong since in the case that (x+3) is negative (when x < -3), the direction of the inequality will not be preserved. Hence, we proceed by multiplying both sides by (x+3)2 (which is always non-negative). We then arrive at (x+3)2(x+4) > 2(x+3). Using algebraic rearrangement and factorisation we can then get to (x+3)[(x+3)(x+4)-2] > 0. This is a good place to get to, since we can see that there is a quadratic (which we can factorise) in the second term. Expanding this out we reach (x+3)(x2+7x+10) > 0. Now we can factorise the quadratic (we find 2 numbers 5 and 2 that add to 7 and multiply to 10) to get (x+3)(x+5)(x+2) > 0. We can clearly see this is a cubic expression on the left hand side. Now we can draw the graph y = (x+3)(x+5)(x+2), which must intersect the x axis at x = -5, -3 and -2 (since these value of x give a y value of 0). Now, looking at the annotated graph, we can see that the desired region (where y < 0) must be where x > -2 or -5 < x < -3. Note that we use strict inequality here and not equality aswell since if x were eqeal to these values, y would be equal to 0, which is outside of the constraint.

TD
Answered by Tutor98598 D. Further Mathematics tutor

10461 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.


How do I find and plot the roots of a polynomial with complex roots on an Argand diagram? e.g. f(z) =z^3 -3z^2 + z + 5 where one of the roots is known to be 2+i


Evaluate the following product of two complex numbers: (3+4i)*(2-5i)


Find the vector equation of the line of intersection of the planes 2x+y-z=4 and 3x+5y+2z=13.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences