A cylindrical specimen of material with diameter 1.5x10^-4 has a breaking stress of 1.3GPa. Calculate the tensile force acting on the specimen at breaking point.

We first need to remember that stress is force over area. We can calculate the area using the diameter as the specimen is told to be cylindrical (circular cross-section). The area can be calculated using 0.25 x pi x d^2 where d=1.5x10-4, the answer is 1.767x10^-8. Now we can re-arrange the formula for stress to make force the subject: this gives force equals stress multiplied by area. The stress at breaking is given so the answer is achieved by multiplying 1.767x10^-8 by 1.3 GPa (1.3x10^9) giving roughly 23N.

RM
Answered by Richard M. Physics tutor

10581 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the difference between a longitudinal and a transverse wave?


How can I describe the motion of an object falling, due to gravity, through a fluid? And when does the object reach terminal velocity?


Two trains are heading in opposite directions on the same track. Train X has a mass of 16000kg and a speed of 2.8m/s. Train Y has a mass of 12000kg and a speed of 3.1m/s. At what speed do the joined trains move off together immediately after the collison?


State similarity and difference between the electric field lines and the gravitational field lines around an isolated positively charged metal sphere.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning