A cylindrical specimen of material with diameter 1.5x10^-4 has a breaking stress of 1.3GPa. Calculate the tensile force acting on the specimen at breaking point.

We first need to remember that stress is force over area. We can calculate the area using the diameter as the specimen is told to be cylindrical (circular cross-section). The area can be calculated using 0.25 x pi x d^2 where d=1.5x10-4, the answer is 1.767x10^-8. Now we can re-arrange the formula for stress to make force the subject: this gives force equals stress multiplied by area. The stress at breaking is given so the answer is achieved by multiplying 1.767x10^-8 by 1.3 GPa (1.3x10^9) giving roughly 23N.

RM
Answered by Richard M. Physics tutor

10211 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A railway car of mass m1 travelling at a velocity of v1 collides with a second car of mass m2 travelling at v2 and the two join together. What is their final velocity?


What are the SUVAT equations and how can I remember them?


A student heats a bar of chocolate in the microwave for one minute. When they remove the bar they observe that there are patches of melted chocolate with unmelted chocolate between them. Suggest the mechanism of how this happens.


If photons are little particles emitted by atoms, where were they before they got emitted?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences