Integrate cos(4x)sin(x)

The easiest way of approaching this question is to use De Moivre's formula: e^(inx) = cos(nx) + isin(nx) from which it is simple to show that cos(nx) = (e^(inx) + e^(-inx)) / 2 and sin(nx) = (e^(inx))- e^(-inx)) /2i therefore, cos(4x)sin(x) = (e^(4ix) + e^(-4ix)) * ((e^(ix)) - (e^(-ix)) / 4i= [e^(5ix) - e^(-5ix) - e^(3ix) + e^(-3ix)] / 4i= sin(5x)/2 - sin(3x)/2Finally, integrating, this gives cos(3x)/6 - cos(5x)/10 + integration constantThis can also be done by using various trigonometric identities, however this method is simpler and can continue to be applied to more complex questions. 

KM
Answered by Kirill M. Further Mathematics tutor

13971 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Show that the sum from 1 to n of 1/(2n+1)(2n-1) is equal to n/(2n+1) by Induction


Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


Find the nth roots of unity.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning