When is the inequality x^4 < 8x^2 + 9 true?

If we consider this like a normal quadratic problem, this becomes easy

x4 < 8x2 + 9

x4 - 8x2 - 9 < 0

(x2-9)(x2+1) < 0

This means there are roots of this expression at x2 = 9 and x2 = -1

Since for all reals, x2 > 0, we know the two roots of this expression are x=+-3

Now, since x4 - 8x2 - 9 is a quartic (ie, it has an x4 expression), we know that given any sufficiently positive or negative x, the quartic will be positive (ie, if x is 10000, or -10000)

Therefore, we know for this to be true, -3<x<3 (since we have found the solutions, we simply need to work out which regions satisfy the criteria)

JP
Answered by Jesse P. MAT tutor

3667 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Let a and b be positive real numbers. If x^2 + y^2<=1 then what is the largest that ax+by can get?


Circle the correct letter: The equation x^3 - 30x^2 + 108x - 104 = 0 has a) No real roots; b) Exactly one real root; c) Three distinct real roots; d) A repeated root.


If f(x) =x^2 - 5x + 7 what are the coordinates of the minimum of f(x-2)?


How many distinct solutions does the following equation have? log(base x^2 +2) (4-5x^2 - 6x^3) = 2 a)None, b)1, c)2, d)4, e)Infinitely many


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning