How would you prove the 'integration by parts' rule?

This involves thinking about a well-known formula (the product rule) in a slightly different way. Looking at the product rule, for two functions u and v, (uv)' = uv' + vu'. We can rewrite this as uv' = (uv)' - vu'. Integrating both sides, we obtain integral of uv' = uv - integral of vu'.

ER
Answered by Ethan R. STEP tutor

1889 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Given a differential equation (*), show that the solution curve is either a straight line or a parabola and find the equations of these curves.


STEP 2 - 2018, Q6i): Find all pairs of positive integers (n, p), where p is a prime number, that satisfy n! + 5 = p .


How can I integrate e^x sin(x)?


Show that if a polynomial with integer coefficients has a rational root, then the rational root must be an integer. Hence, show that x^n-5x+7=0 has no rational roots.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning