Prove by induction that the sum of the first n integers can be written as (1/2)(n)(n+1).

For n = 1, the sum is given by (1/2)(1)(1+1), which gives 1, the expected result. We now assume that the statement is true for some k. If we look at k+1, the sum is given by 1 + 2 + ... + k + (k+1). Since we have assumed that 1 + 2 + ... + k = (1/2)(k)(k+1), this can be rewritten as (1/2)(k)(k+1) + (k+1). Simplifying this gives (1/2)(k+1)(k+2), which is the required result. If the statement is true for n = k, we have shown it to be true for n = k + 1. Since the statement is true for n = 1, it is shown to be true for all n >= 1.

JS
Answered by Jason S. Further Mathematics tutor

2171 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

solve the 1st order differential equation 2y+(x*dy/dx)=x^3


Convert the general complex number z=x+iy to modulus-argument form.


Solve the differential equations dx/dt=2x+y+1 and dy/dt=4x-y+1 given that when t=0 x=20 and y=60. (A2 Further pure)


Given that abc = -37 + 36i; b = -2 + 3i; c = 1 + 2i, what is a?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences