Derive an expression for the centripetal acceleration of a body in uniform circular motion.

(I assume familiarity with positions represented by vectors and differentiation of trigonometric functions). Consider the coordinates of a point moving in a circle of radius r around the origin. The equation of the circle is (rsin theta)2 +(rcos theta)2 = r2. So the position vector x is (rcos theta; rsin theta) - this is a column vector. So differentiate with respect to time to get tangential velocity dx/dt: (-rsin thetadtheta/dt; rcos thetadtheta/dt). Differentiate again to get acceleration d2x/dt2: (-rcos theta(dtheta/dt)2-rsin thetad2theta/dt2; -rsin theta(dtheta/dt)2+rcos thetad2theta/dt2). Now dtheta/dt is of course constant since it's constant motion, which means d2theta/dt2 = 0! So acceleration is now simply (-rcos theta(dtheta/dt)2; -rsin theta(dtheta/dt)2). We can relate velocity and position as |v|=r(dtheta/dt), and acceleration as a=|v|2/r.

HA
Answered by Hubert A. Physics tutor

3528 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

explain how a cyclotron produces a high energy electron


How would you calculate the moment of a Force on a rigid object?


An electron and a proton are in any electric field E=5x10^2 V/m. What is their speed 1.0 cm after being released?


Use the kinetic theory of gases to explain why the pressure inside a container increases when the temperature of the air inside it rises. Assume that the volume of the container remains constant.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences