Derive an expression for the centripetal acceleration of a body in uniform circular motion.

(I assume familiarity with positions represented by vectors and differentiation of trigonometric functions). Consider the coordinates of a point moving in a circle of radius r around the origin. The equation of the circle is (rsin theta)2 +(rcos theta)2 = r2. So the position vector x is (rcos theta; rsin theta) - this is a column vector. So differentiate with respect to time to get tangential velocity dx/dt: (-rsin thetadtheta/dt; rcos thetadtheta/dt). Differentiate again to get acceleration d2x/dt2: (-rcos theta(dtheta/dt)2-rsin thetad2theta/dt2; -rsin theta(dtheta/dt)2+rcos thetad2theta/dt2). Now dtheta/dt is of course constant since it's constant motion, which means d2theta/dt2 = 0! So acceleration is now simply (-rcos theta(dtheta/dt)2; -rsin theta(dtheta/dt)2). We can relate velocity and position as |v|=r(dtheta/dt), and acceleration as a=|v|2/r.

HA
Answered by Hubert A. Physics tutor

3804 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What path would a charge moving in the x-y plane track, in the presence of a uniform magnetic field out of the page?


Derive the kinetic theory equation pV=Nm/3(crms2) for an ideal gas.


A student has a mass of 80kg. How much would the student weigh on the surface of the Moon?


Explain the wave - particle duality


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning