Two satellites are in orbit around the Earth. The first is in a geostationary orbit, the second satellite at radius half that of the first. What is the (approximate) period, in hours, of the second satellite?

A geostationary satellite is one that remains above the same location on Earth. This means it has to be above the equator, and its orbit period is exactly 24 hours! The period of a circular orbit is distance/speed, which is 2piradius/(tangential velocity). If the radius is halved, to remain in orbit the velocity has to go up. Now by equating Newton's gravitational equation with F=mv2/r, we have F=mv2/r=GMEarthm/r2 So v2=GMEarth/r Halving r means v must go up by sqrt(2). So our new period is Tnew=24*(1/2)*(1/sqrt(2))=8.5 hrs.

HA
Answered by Hubert A. PAT tutor

7029 Views

See similar PAT University tutors

Related PAT University answers

All answers ▸

Question below as would not fit in here


How are you to find 2007^2 − 2006^2 without a calculator?


How do I evaluate something like 3070^2-3069^2?


A function is defined piecewise f(x) = ( e^x for x<0, e^(-x) + 2x for x>= 0). Sketch f(x) and its first, second and third derivatives


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning