Prove by induction the sum of the natural numbers from 1 to n is n(n+1)/2

Need whiteboard throughout to properly answer, so will go through the ideas of what to do:

Take the base case of when n=1, and show that            (sum from 1 to 1) j = n(n+1)/2       is equal to 1.

Take the assumption that this is true for some n=k in the natural numbers. So want to show it's true for n=k+1.

Use the sigma notation to split the sum from 1 to k+1 to the sum from 1 to k, and adding k+1. We have assumed that

(sum from 1 to k) j = k(k+1)/2, so we now have that (sum from 1 to k) j + (k+1) = k(k+1)/2 + (k+1), and we can then show that this is equal to (k+1)(k+2)/2.

So since we have shown that the statement is true for a base case, and that if it is true for n=k, it is also true for n=k+1, then we have proved the statement by the mathematical principle of induction.

OO
Answered by Oisin O. Further Mathematics tutor

2593 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve the inequality x/(x+2) ≤ 4/(x-3) for x ≠ -2 or 3


'Find the first derivative, with respect to x, of arctan(1/x) for non-zero real x. Hence show that the value of arctan(x)+arctan(1/x) is constant for all non-zero x, explicitly stating this constant in your final answer.' How do I solve this?


How do I know when I should be using the Poisson distribution?


Calculate the value of the square root of 3 to four decimal places using the Newton-Raphson process


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning